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Abstract: In this article, we explain pointwise slant, pointwise hemislant, and warped product pointwise hemislant
submanifolds whose ambient spaces are nearly para-Kaehler manifolds. Also, we obtain several theorems and examples.
Subsequently, we get some results concerning the inequality.
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1. Introduction
Slant submanifolds were explained by Chen in 1990 as a natural generalization of both invariant and antiinvariant
submanifolds in Hermitian manifold [4]. Later, pointwise slant and pointwise hemislant submanifolds of different
construction and (semi)-Riemannian manifolds are studied in [1, 6, 9].

Warped product manifolds were introduced by Bishop and O’Neill [3]. Warped product manifold Nx =

Na ×k Nb is a product manifold Na ×Nb equipped by a Riemannian metric ğx = ğ1 + k2ğ2 and function k is
a warping function [3, 12]. The notion of warped product manifolds is generally used in differential geometry,
theory of general relativity, string theory, and black holes [12].

Recently, Sahin worked warped product hemislant submanifolds whose ambient spaces are Kaehler
manifolds [9]. He demonstrated that warped product pseudoslant N⊥

b ×k N
θ
a submanifolds do not exist and

he obtained a characterization and an inequality for the existing of warped product of the form Nθ
a ×k N

⊥
b of

Kaehler manifold. Later, Gündüzalp studied warped product pointwise hemislant submanifolds whose ambient
spaces are para-Kaehler manifolds [6].

Then, Tachibana studied manifolds initially [10]. These manifolds are nearly Kaehler manifolds. For
example, S6 (six dimensional sphere) is a example of nearly Kaehler non-Kaehler manifold.

Every nearly para-Kaehler manifold is not a para-Kaehler, but every para-Kaehler manifold is a nearly
para-Kaehler. This generalization is correct, so we provide examples of both nearly para-Kaehler and para-
Kaehler manifolds, and we investigate warped product pointwise hemislant submanifolds whose ambient spaces
are nearly para-Kaehler manifolds in this article.

This article is organized as follows. In Section 2, we describe pointwise slant submanifolds and present
some examples and some basic results of these manifolds. In Section 3, we introduce proper pointwise hemislant
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submanifolds whose ambient spaces are nearly para-Kaehler manifolds and discuss their properties. In Section
4, we describe warped product pointwise hemislant submanifolds whose ambient spaces are nearly para-Kaehler
manifolds. Additionally, we obtain some basic results and examples. In Section 5, we also obtain an inequality.

2. Preliminaries
Let N̄x be a (2 n̄) -dimensional almost paracomplex metric structure. If it is provided with the structure (P, ğ1) ,
where P is a tensor field of type (1 , 1 ) and ğ1 is expressed as a semi-Riemannian metric

P2 = I, ğ1(PXa,PYb) = −ğ1(Xa,Yb) (1)

and
ğ1(PXa,Yb) = −ğ1(Xa,PYb) (2)

for all vector fields Xa,Yb on N̄x .
Let T N̄x state the tangent bundle of N̄x and ∇̄ , the covariant differential operator on N̄x with respect

to ğ1 . Garay states that [5] if the almost complex manifold P indicates

(∇̄XaP)Xa = 0 (3)

for any T N̄x , then an almost paracomplex metric manifold is called nearly para-Kaehler structure. Equation
(3) is equivalent to

(∇̄Xa
P)Yb + (∇̄Yb

P)Xa = 0 (4)

including any vector fields Xa,Yb on N̄x .
Currently, let Nx be a submanifold of (P, ğ1) . The Gauss and Weingarten equations are dedicated by

∇̄XaYb = ∇XaYb + h1(Xa,Yb), (5)

∇̄Xa
N = −ANXa +∇⊥

Xa
N, (6)

including Xa,Yb ∈ Γ(T Nx) and N ∈ Γ(T N⊥
b ) , where h1 is a second fundamental form of Nx , AN is the

Weingarten endomorphism connected with N , and ∇⊥ is the normal connection. AN and h1 are related by

ğ1(ANXa,Yb) = ğ1(h1(Xa,Yb), N), (7)

here ğ1 designates the semi-Riemannian metric on Nx with the one introduced on Nx . For all tangent vector
field Xa , we denote

PXa = RXa + SXa, (8)

where RXa is the tangential component of PXa and SXa is the normal one. For all normal vector field N ,

PN = rN + sN, (9)

where rN and sN are the tangential and normal components of PN .
Now, denote by GXa

Yb and UXa
Yb the tangential and normal parts of (∇̄Xa

P)Yb , i.e.,

(∇̄Xa
P)Yb = GXa

Yb + UXa
Yb, (10)
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for all Xa,Yb ∈ Γ(T Nx) . For the proporties of G and U , we refer to [8], which we express here for later use.

(m1) (a) GXa+Yb
Wc = GXa

Wc + GYb
Wc

(b) UXa+Yb
Wc = UXaWc + UYb

Wc

(m2) (a) GXa
(Yb +Wc) = GXa

Yb + GXa
Wc

(b) UXa
(Yb +Wc) = UXa

Yb + UXa
Wc

(m3) (a) ğ1(GXa
Yb,Wc) = −ğ1(Yb,AXa

Wc)

(b) ğ1(UXa
Yb,Vf ) = −ğ1(Yb,GXa

Vf )

(m4) GXa
PYb + UXa

PYb = −P(GXa
Yb + UXa

Yb)

for all Xa,Yb,Wc ∈ Γ(T Nx) and Vf ∈ Γ(T N⊥
b )

On a semi-Riemannian submanifold Nx whose ambient space are nearly para-Kaehler manifold N̄x . by
equations (3) and (10), we get

(a)GXa
Yb + GYb

Xa = 0 (b)UXa
Yb + UYb

Xa = 0 (11)

for any Xa,Yb ∈ Γ(T Nx)

The mean curvature vector is indicated by

H =
1

n
traceh1. (12)

Definition 2.1 We call that a submanifold Nx whose ambient spaces are nearly para-Kaehler manifold
(N̄x,P, ğ1) is pointwise slant if for all time-like or space-like tangent vector field Xa , the ratio ğ1(RXa, RXa)/ğ1(PXa, PXa)

is nonconstant. Moreover, a submanifold Nx whose ambient spaces are nearly para-Kaehler manifold N̄x is
called pointwise slant [2] if, at each point p ∈ Nx , the Wirtinger angle θ(X) between PXa and TpNx is
dependent on the choice of the nonzero Xa ∈ TpNx . In this instance, the Wirtinger angle causes a real-valued
function θ : T Nx − 0 → R , which is called the slant function or Wirtinger function of the pointwise slant
submanifold.

We express that a pointwise slant submanifold of nearly para-Kaehler manifold is called slant [4] if its
Wirtinger function θ is globally constant.

If Nx is a paracomplex (para-holomorphic) submanifold, in that case, PXa = RXa and the above ratio
is equal to 1 . Moreover, if Nx is totally real (antiinvariant), then R = 0 , so PXa = SXa and the above ratio
equals 0 . Hence, both paracomplex submanifolds and totally real are the special situations of pointwise slant
submanifolds. Neither totally real nor paracomplex pointwise slant submanifold can be called a proper pointwise
slant.

Definition 2.2 Let Nx be a proper pointwise slant submanifold whose ambient spaces are para-Hermitian man-
ifold (N̄x,P, ğ1). We call it of
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type-1 if for any spacelike(timelike) vector field Xa , RXa is timelike(spacelike), also |RXa|
|PXa| > 1 .

type-2 if for any spacelike(timelike) vector field Xa , RXa is timelike(spacelike), also |RXa|
|PXa| < 1 .

Similar to the approach used by Alegra and Carriazo, the following theorem and results were obtained [2].

Theorem 2.3 Let Nx be a pointwise slant submanifold of an almost paracomplex metric manifold (N̄x,P, ğ1) .
So,
(a) Nx is the pointwise slant submanifold of type-1 if and only if for any spacelike (timelike) vector field Xa ,
RXa is timelike (spacelike), also there arises function µ ∈ (1 ,+∞) . Therefore,

µ = R2 = cosh2θ. (13)

θ denotes the slant function of Nx .
(b) Nx is pointwise slant submanifold of type-2 if and only if for any spacelike (timelike) vector field Xa , RXa

is timelike (spacelike), also there arises a function µ ∈ (0 , 1 ) . Therefore,

µ = R2 = cos2θ, (14)

here θ indicates the slant function of Nx .

Proof. Firstly, if Nx is a pointwise slant submanifold of type-1 for any spacelike tangent vector field Xa , RXa

is timelike, and by the equation (1), PXa is also timelike. Furthermore, they supply |RXa|/|PXa| > 1 , so there
exists the slant function α . This follows from

cosh θ =
|RXa|
|PXa|

=

√
−ğ1(RXa, RXa))√
−ğ1(PXa,PXa)

(15)

Using (1) and (17) , we have

ğ1(R
2Xa,Xa) = cosh2 θğ1(Xa,Xa).

Thus, we get R2Xa = cosh2θ(Xa) , so µ = R2 = cosh2 θ.

We can study anything using the same method for any time-like tangent vector field Zd . Currently, RZd and
PZd are spacelike. Therefore, in place of (15), we get

cosh θ =
|RZd|
|PZd|

=

√
ğ1(RZd, RZd))√
ğ1(PZd,PZd)

Since R2Xa = cosh2θ(Xa) , for any spacelike and timelike Xa , it further provides for lightlike vector fields.
Therefore, we get µ = R2 = cosh2 θ. The contrary is (a) direct calculation.
In a similar way, we have (b) ̇Lastly, for both pointwise slant submanifolds of type-1 and type-2, if Xa is space-
like, PXa is timelike. Thus, all pointwise slant submanifolds of type-1 and type-2 should be a semi-Riemann
manifold.
Using (1),(5),(13), and (14), we get

4



AYAZ and GÜNDÜZALP/Turk J Math

Corollary 2.4 Let Nx be a pointwise slant submanifold of almost paracomplex metric manifold (N̄x,P, ğ1)
with the slant function θ . Later, for any nonnull vector fields Xa,Yb ∈ T Nx , we obtain:
If Nx is of type-1, then

ğ1(RXa, RYb) = − cosh2 θğ1(Xa,Yb)

ğ1(SXa, SYb) = sinh2 θğ1(Xa,Yb)). (16)

If N is of type-2, then

ğ1(RXa, RYb) = − cos2 θğ1(Xa,Yb),

ğ1(SXa, SYb) = − sin2 θğ1(Xa,Yb). (17)

Using (1),(5),(6),(13), and (14), we have

Corollary 2.5 Let Nx be a pointwise slant submanifold of an almost paracomplex metric manifold (N̄x,P, ğ1) .
Later, let Nx be a pointwise slant submanifold of almost paracomplex metric manifold N̄x . Therefore, Nx is
a pointwise slant submanifold of
(for type-1) if and only if

rSXa = − sinh2 θXa and sSXa = −RSXa (18)

(for type-2) if and only if
rSXa = sin2 θXa and sSXa = −RSXa (19)

for all timelike (spacelike) vector field Xa .

Let us consider almost paracomplex structure on R̄6
3 :

P (
∂

∂xi
) =

∂

∂yi
, P (

∂

∂yi
) =

∂

∂xi
, ğ1 = (+,−,+,−,+,−)

and ğ1 is pseudo-Riemannian metric. Also, (x1, y1, x2, y2, x3, y3) denotes the cartesian coordinates over R̄6
3.

At the moment, we can give several examples with pointwise slant submanifolds.

Example 2.1 For k+ n > 0 , with

ψ(k, n, z) = (coshk, cosh n, sinh n, sinh k, z, π),

we have a pointwise slant submanifold of type-1 in (R̄6
3,P, ğ1) , µ = R2 = cosh2(k + n) .

Example 2.2 For a ̸= b , with
ψ(a, b, r) = (sina, sinb, cosa, cosb, r, h),

we have a pointwise slant submanifold with type-2 in (R̄6
3,P, ğ1) , µ = R2 = cos2(a− b) ,

for (a− b) ∈ (0, π2 )) .

Example 2.3 For a ̸= b ̸= 0 with,

ψ(a, b, v) = (asinq, absinq, acosq, abcosq, v, n)
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describes a pointwise slant submanifold in (R̄6
3,P, ğ1) , with µ = R2 = 1

1−b2 and it is

(i) of type-1 if 0 < 1− b2 < 1,

(ii)of type-2 if 1− b2 > 1.

3. Pointwise hemislant submanifolds whose ambient spaces are nearly para-Kaehler manifolds

Definition 3.1 A semi-Riemannian submanifold Nx whose ambient spaces are nearly para-Kaehler manifold
(N̄x,P, ğ1) is called pointwise hemislant submanifold if there exist two orthogonal distributions D⊥

t , Dα
n with

Nx . Therefore,
1) T Nx = D⊥

t ⊕Dα
n

2) The distribution D⊥
t is a totally real distribution, PD⊥

t ⊂ T ⊥Nx;

3) The distribution Dα
n is a pointwise slant distribution.

Then, we define the corner θ as the hemislant function with the pointwise hemislant submanifold Nx . A
pointwise hemislant submanifold Nx is called proper if its hemislant function specifies θ ̸= 0, π2 , and θ is not
constant on Nx .

Definition 3.2 Let Nx be a proper pointwise hemislant submanifold of an almost paracomplex metric manifold
(N̄x,P, ğ1). Let Dα

n be a pointwise slant distribution on Nx . We sat that it is of

type-1 if for any spacelike(timelike) vector field Xa , RXa is timelike(spacelike), and also |RXa|
|PXa| > 1 .

type-2 if for any spacelike(timelike) vector field Xa , RXa is timelike(spacelike), and also |RXa|
|PXa| < 1 .

Theorem 3.3 Let Nx be a pointwise hemislant submanifold of almost paracomplex metric manifold (N̄x,P, ğ1) .
Thus,
(a) Dα

n is a pointwise slant distribution of type-1 if and only if for any spacelike (timelike) vector field Xa ,
RXa is timelike (spacelike), also there arises a function µ ∈ (1 ,+∞) . Therefore,

µ = R2 = cosh2θ, (20)

here θ defines the hemislant function of Nx .
(b) Dα

n is a pointwise slant distribution of type-2 if and only if for any spacelike (timelike) vector field Xa ,
RXa is timelike (spacelike), also there arises a function µ ∈ (0, 1 ) . Therefore,

µ = R2 = cos2θ, (21)

here θ denotes the hemislant function of Nx .

Proof. The proof is conducted similarly to the proof of (13) and (14),
By utilizing (1),(5), (20), and (21), we get

Corollary 3.4 Let Nx be a pointwise hemislant submanifold of almost paracomplex metric manifold (N̄x,P, ğ1)
with the hemislant function θ . For nonnull vector fields Xa,Yb ∈ T Nx ,
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if Dα
n is of type-1, then we obtain

ğ1(RXa, RYb) = − cosh2 θğ1(Xa,Yb),

ğ1(SXa, SYb) = sinh2 θğ1(Xa,Yb). (22)

If Dα
n is of type-2, then we have

ğ1(RXa, RYb) = − cos2 θğ1(Xa,Yb),

ğ1(SXa, SYb) = − sin2 θğ1(Xa,Yb). (23)

A hemislant submanifold Nx of an almost paracomplex metric manifold N̄x is called mixed geodesic if
h1(Xa,Zd) = 0 , for Xa ∈ Dα

n and Zd ∈ D⊥
t

Let Nx be a pointwise hemislant submanifold whose ambient spaces are nearly para-Kaehler manifold
N̄x . The normal bundle T ⊥Nx can be decomposed as T ⊥Nx = PD⊥

t ⊕ SDα
n ⊕ µ .

Now, we get some results for use in the next section.

Lemma 3.5. Let Nx be a proper pointwise hemislant type-1 and type-2 submanifold whose ambient spaces are
nearly para-Kaehler manifold (N̄x,P, ğ1) . In that case,
1) For type-1,

ğ1(∇Xa
Yb,Zd) = sech2θ(ğ1(ASRYb

Xa,Zd)− ğ1(APZd
Xa, RYb)

+ ğ1(UXa
Zd, SYb) + ğ1(UXa

Yb,PZd)) (24)

2) For type-2,

ğ1(∇XaYb,Zd) = sec2θ(ğ1(ASRYb
Xa,Zd)− ğ1(APZd

Xa, RYb)

+ ğ1(UXaZd, SYb) + ğ1(UXaYb,PZd)) (25)

for nonnull vector fields Xa,Yb ∈ Dα
n and Zd ∈ D⊥

t .

7
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Proof. Using (1),(2),(5),(6),(7),(8),(9),(10), and (18), we write

ğ1(∇XaYb,Zd) = ğ1(∇̄X aYb,Zd)

= −ğ1(P∇̄X aYb,PZd)

= −ğ1(∇̄X aPYb,PZd) + ğ1((∇̄X aP)Yb,PZd)

= −ğ1(∇̄X aRYb,PZd) + ğ1(∇̄X aSYb,PZd) + ğ1(UX aYb,PZd)

= −ğ1(h1(Xa, RYb),PZd) + ğ1(P∇̄X aSYb,Zd) + ğ1(UX aYb,PZd)

= −ğ1(h1(Xa, RYb),PZd) + ğ1(∇̄X aPSYb,Zd)

− ğ1((∇̄X aP)SYb,Zd) + ğ1(UX aYb,PZd)

= −ğ1(h1(Xa, RYb),PZd) + ğ1(∇̄X arSYb,Zd)

− ğ1(∇̄X asSYb,Zd)− ğ1(GX aSYb,Zd) + ğ1(UX aYb,PZd)

= −ğ1(h1(Xa, RYb),PZd)− 2sinhθcoshθXa(θ)ğ1(Yb,Zd)

− sinh2θğ1(∇̄X aYb,Zd)− ğ1(∇̄XaSRYb,Zd)

+ ğ1(UXa
Zd,SYb) + ğ1(UXa

Yb,PZd)

= −ğ1(h1(Xa, RYb),PZd)− sinh2θğ1(∇̄X aYb,Zd)

+ ğ1(ASRYb
Xa,Zd)− ğ1(∇⊥

Xa
SRYb,Zd)

+ ğ1(UXaZd,SYb) + ğ1(UXaYb,PZd)

Utilizing (5) and (7), we have

cosh2θğ1(∇Xa
Yb,Zd) = ğ1(ASRYb

Xa,Zd)− ğ1(APZd
Xa, RYb)

+ ğ1(UXa
Zd, SYb) + ğ1(UXa

Yb,PZd)

This proves Case (1). In a similar way, the proof of Case (2) is obtained.
Now using the above lemma, we obtain

Corollary 3.6 Let Nx be a proper pointwise hemislant type1-2 submanifold whose ambient spaces are nearly
para-Kaehler manifold (N̄x,P, ğ1) . In that case, the proper pointwise slant distribution Dα

n describes a totally
geodesic foliation, if and only if

ASRXa
Zd −APZd

RXa ∈ Γ(D⊥
t ) UXa

H ∈ Γ(µ) (26)

for nonnull vector fields Zd,Wc ∈ D⊥
t , Xa ∈ Dα

n and H ∈ Γ(T Nx)

Let us consider nearly para-Kaehler structure on R̄6
3 :

P(
∂

∂xi
) =

∂

∂yi
, P(

∂

∂yi
) =

∂

∂xi

ğ1 = (+,−,+,−,+,−). ğ1 is pseudo-Riemannian metric. Also, (x1, y1, x2, y2, x3, y3) denotes the cartesian
coordinates over R̄6

3 . Then (R̄6
3,P, ğ1) is a nearly para-Kaehler manifold.

Now, we will write some examples.

8
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Let Nx be a semi-Riemannian submanifold of R̄6
3 described by ψ : Nx → R̄6

3 .

Example 3.1 The semi-Riemannian submanifold Nx of (R̄6
3,P, ğ1) nearly para-Kaehler manifold described by

ψ(m,n, k) = (sinhm, sinhn, coshn, coshm, sinhk, π)

is a pointwise hemislant submanifold of type-1 . Actually, the antiinvariant distribution is D⊥
t = span{coshk ∂

∂x3
}

and pointwise slant distribution is Dα
n = span{coshm ∂

∂x1
+ sinhm ∂

∂y2
, coshn ∂

∂y1
+ sinhn ∂

∂x2
} and R2 =

cosh2(m+ n)(X ) with m+ n > 0 .

Example 3.2 The semi-Riemannian submanifold Nx of (R̄6
3,P, ğ1) nearly para-Kaehler manifold defined by

ψ(m, n, k) = (sinm, sinn, cosm, cosn, k, e),

is a pointwise hemislant submanifold of type-2 . Actually, the distributions are D⊥
t = span{ ∂

∂x3
} and

Dα
n = span{cosm ∂

∂x1
− sinm ∂

∂x2
, cosn ∂

∂y1
− sinn ∂

∂y2
} with R2 = cos2(m− n)(X ) , m− n ∈ (0, π2 ) .

4. Warped product pointwise hemislant submanifolds whose ambient spaces are nearly para-
Kaehler manifolds

Warped products are Na and Nb two semi-Riemannian manifolds with metrics ğa and ğb also differentiable
function k on Na . Projections of Na ×Nb are β1 : Na ×Nb → Na and β2 : Na ×Nb → Nb . Warped product
manifold Nx = Na ×k Nb is the semi-Riemannian manifold Na ×Nb = (Na ×Nb, ğ) with the semi-Riemannian
structure; therefore,

ğ(Xa,Yb) = ğ1(β1∗Xa, β1∗Yb) + (k ◦ β1)2ğ1(β2∗Xa, β2∗Yb)

for every vector fields Xa,Yb ∈ Γ(TNx) , where * indicates the tangent map. The function k is called the
warping function. If the warping function is constant, the structure Nx is called trivial. However, if the
warping function is nonconstant, the structure Nx is called nontrivial. Na is totally geodesic and Nb is totally
umbilical in Nx [12].

Let Nx = Na ×k Nb be a warped product manifold with the warping function k ; therefore,

∇Xa
Zd = ∇Zd

Xa = (Xalnk)Zd (27)

for nonnull vector fields Xa ∈ T Na and Zd ∈ T Nb [3], where ∇ defines the Levi-Civita connections on Nx .
Also, as a result, we get

||grad(k)||2 =

s∑
v=1

(ev(k))
2 (28)

for an orthonormal frame (e1 , ..., es) on Na .
Here grad(k) is the gradient of k (∇k) and k is a nonconstant function.

S. Uddin and others demonstrated the nonexistence in warped product hemislant submanifolds of
Nx = N⊥

b ×k N θ
a in nearly Kaehler manifold [11]. In a similar way, we establish the nonexistence of non-

trivial warped product hemislant submanifolds of Nx = N⊥
b ×k N θ

a in nearly para-Kaehler manifolds.

9
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Theorem 4.1. There do not exist nontrivial warped product pointwise hemislant submanifolds Nx = N⊥
b ×kN θ

a

whose ambient spaces are nearly para-Kaehler manifolds N̄x , where N⊥
b is antiinvariant and N θ

a is a pointwise
slant submanifold in N̄x .

Proof. The nonexistence of nontrivial warped product pointwise hemislant submanifolds Nx = N⊥
b ×k N θ

a of
Kaehler manifolds was proved by Sahin from Theorem 4.2. of [9]. Similarly, we demonstrate the nonexistence of
nontrivial warped product pointwise hemislant submanifolds Nx = N⊥

b ×kN θ
a of nearly para-Kaehler manifolds.

Let us suppose that Nx is a warped product pointwise hemislant submanifold Nx = N⊥
b ×k N θ

a in N̄x so that
N⊥

b is a totally real submanifold and N θ
a is proper pointwise slant submanifold of N̄x . In that case from (5),

we get ∇Xa
Yb = ∇̄Xa

Yb for Xa ∈ Γ(T N θ
a ) and Zd ∈ Γ(T N⊥

b )

Using (27), we get Zd(lnk)ğ1(Xa,Xa) = ğ1(∇̄Xa
Zd,Xa) .

Since Xa and Zd are orthogonal, we obtain Zd(lnk)ğ1(Xa,Xa) = −ğ1(Zd, ∇̄Xa
Xa) . Then from (1),(2),(3) and

(5), we derive

Zd(lnk)ğ1(Xa,Xa) = ğ1(PZd,P∇̄Xa
Xa)

= ğ1(PZd, ∇̄Xa
PXa − (∇̄Xa

P)Xa)

= ğ1(PZd, ∇̄XaPXa)

= ğ1(PZd, h1(Xa,PXa))

for Xa ∈ ΓT (N θ
a ) and Zd ∈ Γ(T N⊥

b ) Then, from (7), we derive

ğ1(APZd
Xa,PXa) = −ğ1(PZd, ∇̄XaPXa)

Since ∇̄ is torsion-free ([Xa,Yb] = ∇XaYb +∇Yb
Xa = 0) , we derive

ğ1(APZd
Xa,PXa) = −ğ1(PZd, [Xa,PXa] + ∇̄PXa

Xa)

Since [Xa,PXa] ∈ ΓT (N θ
a ) and PZd ∈ Γ(T N⊥

b ) , we derive

ğ1(APZd
Xa,PXa) = −ğ1(PZd, ∇̄PXaXa)

Then from (1), we get

ğ1(APZd
Xa,PXa) = −ğ1(PZd, ∇̄PXa

P2Xa)

From (3), we have

ğ1(APZd
Xa,PXa) = −ğ1(PZd, (∇̄PXaP)PXa + P∇̄PXaPXa)

ğ1(APZd
Xa,PXa) = −ğ1(PZd,P∇̄PXa

PXa)

Using (1), we arrive

ğ1(APZd
Xa,PXa) = ğ1(Zd, ∇̄PXa

PXa)

10
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Since PXa and Zd are orthogonal, we obtain

ğ1(APZd
Xa,PXa) = −ğ1(∇̄PXa

Zd,PXa)

Using (7) and (27), we get

ğ1(h1(Xa,PXa)) = −Zd(lnk)ğ1(PXa,PXa)

Using (1) and (5), we get

ğ1(h1(Xa,PXa)) = Zd(lnk)ğ1(Xa,Xa)

ğ1(∇̄Xa
PXa −∇Xa

PXa,PZd) = Zd(lnk)ğ1(Xa,Xa)

−ğ1(∇Xa
PXa,PZd) = Zd(lnk)ğ1(Xa,Xa)

−ğ1(P∇Xa
Xa,PZd) = Zd(lnk)ğ1(Xa,Xa)

ğ1(∇Xa
Xa,Zd) = Zd(lnk)ğ1(Xa,Xa)

Since Xa and Zd are orthogonal, using (27), we obtain

−ğ1(∇XaZd,Xa) = Zd(lnk)ğ1(Xa,Xa)

−Zd(lnk)ğ1(Xa,Xa) = Zd(lnk)ğ1(Xa,Xa)

Since 2Zd(lnk)ğ1(Xa,Xa) = 0 , k is constant. Therefore, the proof is complete.
Now, we write examples to demonstrate the existence of pointwise hemislant nontrivial warped product

Nx = N θ
a ×k N⊥

b submanifolds of nearly para-Kaehler manifold.

Let Nx be a semi-Riemannian submanifold of R̄6
3 described by ψ : Nx → R̄6

3 .

Example 4.1 For m + n > 0 and m+ n ∈ R , with

ψ(m, n, c) = (coshm, coshn, sinh n, sinhm, c3, α)

ψm = sinh m
∂

∂x1
+ cosh m

∂

∂y2
, ψn = sinh n

∂

∂y1
+ cosh n

∂

∂x2

ψc = +3c2
∂

∂x3

Then we get

Pψm = sinh m
∂

∂y1
+ cosh m

∂

∂x2
, Pψn = sinh n

∂

∂x1
+ cosh n

∂

∂y2
, Pψc = 3c2

∂

∂y3
,

11



AYAZ and GÜNDÜZALP/Turk J Math

which describes a pointwise hemislant submanifold N 3
x with type-1 in (R̄6

3,P, ğ1) nearly para-Kaehler mani-
fold with µ = R2 = cosh2(m+ n) . Actually, Dα

n = span{ψm, ψn} is pointwise slant distribution with hemislant
function and D⊥

t = span{ψc} is antiinvariant distribution.
It is easy to notice that Dα

n and D⊥
t distributions are integrable. The induced metric tensor gNx

on
Nx = N θ

a ×k N⊥
b is given by gNx

= −dm2 + dn
2 + (9c4)dc

2 + dt
2

Thus, Nx is pointwise hemislant nontrivial warped product type-1 submanifold of R̄6
3 nearly para-Kaehler

manifold with warping function k = 3c2 .

Example 4.2 For m− n ∈ (0, π2 ) , with

ψ(m, n, c) = (cosm, cosn, sinm, sinn, sinc, π)

ψm = −sinm ∂

∂x1
+ cosm

∂

∂x2
, ψn = − sin n

∂

∂y1
+ cosn

∂

∂y2

ψc = cos c
∂

∂x3

Then we get

Pψm = − sin m
∂

∂y1
+ cos m

∂

∂y2
, Pψn = − sin n

∂

∂x1
+ cos n

∂

∂x2
, Pψc = cos c

∂

∂y3
,

which describes a pointwise hemislant submanifold with type-2 in (R̄6
3,P, ğ1) with µ = R2 = cos2(m − n) .

Dα
n = span{ψm, ψn} is pointwise slant distribution with hemislant function, D⊥

t = span{ψc} is antiinvariant
distribution, and Pψc⊥TNx = span{ψm, ψn} .
It is easy to notice that Dα

n and D⊥
t distributions are integrable. The induced metric tensor gNx on

Nx = N θ
a ×k N⊥

b is given by gNx = dm
2 − dn

2 + (cos2 c)dc
2.

Thus, N 3
x is pointwise hemislant nontrivial warped product type-2 submanifold of R̄6

3 nearly para-Kaehler
manifold with warping function k = cosc .
Now, we demonstrate lemmas in the below for later use.

Lemma 4.2 Let Nx = N θ
a ×k N⊥

b be a warped product pointwise hemislant type1-2 submanifold whose ambient
spaces are nearly para-Kaehler manifolds N̄x , where N⊥

b and N θ
a are totally real and proper pointwise slant

submanifolds of N̄x . In that case,

−2ğ1(h1(Xa,Yb),PZd) = ğ1(h1(Xa,Zd), SYb) + ğ1(h1(Yb,Zd), SXa) (29)

For any Xa,Yb ∈ TN θ
a and Zd ∈ TN⊥

b .

Proof. Using (3),(5),(6), (7), and (8), we get

ğ1(h1(Xa,Zd),SYb) = ğ1(∇̄Xa
Zd,PYb)− ğ1(∇̄Xa

Zd,RYb)

Using (3),(5), and (27), we get

ğ1(h1(Xa,Zd),SYb) = −ğ1((∇̄Xa
P)Zd,Yb) + ğ1(∇̄Xa

PZd,Yb)

− (Zdlnk)ğ1(Xa,RYb)

12
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Using (10) and property (m3) of G , we obtain

ğ1(h1(Xa,Zd),SYb) = −ğ1(GXa
Zd,Yb)− ğ1(APZd

Xa,Yb)

− (Zdlnk)ğ1(Xa,RYb)

ğ1(h1(Xa,Zd),SYb) = −ğ1(h1(Xa,Yb),PZd)− ğ1(GXa
Zd,Yb)− (Zdlnk)ğ1(Xa,RYb) (30)

Interchanging Xa and Yb in (30), we obtain

ğ1(h1(Yb,Zd),SXa) = −ğ1(h1(Xa,Yb),PZd)− ğ1(GYb
Zd,Xa) + (Zdlnk)ğ1(Xa,RYb) (31)

Thus, from (30) and (31), we obtain (29)

Lemma 4.3 Let Nx = N θ
a ×k N⊥

b be a warped product pointwise hemislant type1-2 submanifold whose ambient
spaces are nearly para-Kaehler manifold N̄x . Then
1) For type-1-2;

2ğ1(h1(Zd,Wc), SXa) = −ğ1(h1(Xa,Zd),PWc)− ğ1(h1(Xa,Wc),PZd)

+ 2(RXalnk)ğ1(Zd,Wc) (32)

2) a) For type-1;

2ğ1(h1(Zd,Wc), SRXa) = −ğ1(h1(RXa,Zd),PWc)− ğ1(h1(RXa,Wc)PZd)

− 2cosh2θ(Xalnk)ğ1(Zd,Wc) (33)

b) For type-2 ;

ğ1(h1(Zd,Wc), SRXa) = −ğ1(h1(RXa,Zd),PWc)− ğ1(h1(RXa,Wc),PZd)

− 2cos2θ(Xalnk)ğ1(Zd,Wc) (34)

for any Zd,Wc ∈ TN⊥
b and Xa ∈ TN θ

a .

Proof. Using (8) and (5), we get

ğ1(h1(Zd,Wc), SXa) = ğ1(∇̄Zd
Wc,PXa)− ğ1(∇̄Zd

Wc,RXa)

= −ğ1(P∇̄Zd
Wc,Xa)− ğ1(∇̄Zd

Wc,RXa)

By using (2),(3) (7), (10), (27) and Wc and RXa are orthogonality, we get

ğ1(h1(Zd,Wc), SXa) = −ğ1((∇̄Zd
P)Wc,Xa) + ğ1(∇̄Zd

PWc,Xa)

+ ğ1(Wc, ∇̄Zd
RXa)

= −ğ1(GZd
Wc,Xa)− ğ1(APWcZd,Xa)

+ (RXalnk)ğ1(Zd,Wc)

= −ğ1(GZd
Wc,Xa)− ğ1((h1(Xa,Zd),PWc)

+ (RXalnk)ğ1(Zd,Wc) (35)

13
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Interchanging Zd and Wc in 29, we obtain

ğ1(h1(Zd,Wc), SXa) = −ğ1(GWc
,ZdXa)− ğ1((h1(Xa,Wc),PZd)

+ (RXalnk)ğ1(Zd,Wc) (36)

From (35) and (36), we derive 1. If we interchange Xa by RXa in (1), we obtain (2) (for type-1). In a similar
way, the proof for type-2 is obtained.

Theorem 4.4. Let Nx = N θ
a ×k N⊥

b be a warped product pointwise hemislant type1-2 submanifold whose
ambient spaces are nearly para-Kaehler manifolds N̄x . So that GZd

Wc ∈ Γ(D⊥
t ) , for any Zd,Wc ∈ Γ(D⊥

t ) and
UL1

Vf ∈ Γ(µ) , for any L1,Vf ∈ Γ(T Nx) where D⊥
t and µ are totally real distribution and invariant normal

subbundle of Nx , respectively. Then Nx is locally a mixed geodesic warped product pointwise submanifold of
the form N θ

a ×k N⊥
b if and only if

*For type-1,

APZd
Xa = 0 and ASRXa

Za = cosh2θXa(φ)Zd (37)

*For type-2,

APZd
Xa = 0, and ASRXa

Zd = −cos2θXa(φ)Zd (38)

for any Xa ∈ Dα
n and Zd ∈ D⊥

t , that φ is a function on Nx so W ′
c(φ) = 0 , for any W ′

c ∈ Γ(D⊥
t ) .

Proof. Let Nx = N θ
a ×k N⊥

b be a warped product pointwise hemislant type1-2 submanifold whose ambient
spaces are nearly para-Kaehler manifolds N̄x . So that N θ

a and N⊥
b proper pointwise slant and totally real

submanifolds of N̄x . In that case, by using (24),(25) and (26), we derive (37) and (38).
Conversely, if Nx is a proper hemislant submanifold whose ambient spaces are nearly para-Kaehler

manifolds N̄x . So that GZd
Wc ∈ Γ(D⊥

t ) , for any Zd,Wc ∈ Γ(D⊥
t ) and UL1

Vf ∈ Γ(µ) , for any L1,Vf ∈ Γ(T Nx) .
Then, using (27) and the relation (37), (38), we obtain ğ1(∇Xa

Yb,Zd) = 0 , implying that the leaves of Dα
n are

totally geodesic in Nx .
For any Zd,Wc ∈ Γ(D⊥

t ) and for any Xa ∈ Dα
n , we obtain

ğ1([Zd,Wc],Xa) = ğ1(∇̄Zd
Wc,Xa)− ğ1(∇̄WcZd,Xa)

= −ğ1(P∇̄Zd
Wc,PXa) + ğ1(P∇̄Wc

Zd,PXa)

= −ğ1(∇̄Zd
PWc,PXa) + ğ1((∇̄Zd

P)Wc,PXa)

+ ğ1(∇̄Wc
PZd,PXa)− ğ1((∇̄Wc

P)Zd,PXa)

= +ğ1(PWc, ∇̄Zd
PXa) + ğ1(GZd

Wc,RXa) + ğ1(UZd
Wc,SXa)

− ğ1(PZd, ∇̄Wc
PXa)− ğ1(GWc

Zd,RXa)− ğ1(UWc
Zd,SXa)

14
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Since GZd
Wc ∈ Γ(D⊥

t ) , for any Zd,Wc ∈ Γ(D⊥
t ) and UL1Vf ∈ Γ(µ) , for any L1,Vf ∈ Γ(T Nx) , Then

ğ1([Zd,Wc],Xa) = +ğ1(PWc, ∇̄Zd
RXa) + ğ1(PWc, ∇̄Zd

SXa)

− ğ1(PZd, ∇̄Wc
RXa)− ğ1(PZd, ∇̄Wc

SXa)

= −ğ1(∇̄Zd
PSXa,Wc) + ğ1((∇̄Zd

P)SXa,Wc)

+ ğ1(h1(Zd,RXa),PWc) + ğ1(∇̄Zd
PSXa,Wc)

− ğ1((∇̄Zd
P)SXa,Wc)− ğ1(h1(Wc,RXa),PZd)

Using (8),(9), and (10), we derive

ğ1([Zd,Wc],Xa) = −ğ1(∇̄Zd
rSXa,Wc)− ğ1(∇̄Zd

sSXa,Wc)

+ ğ1(GZd
SXa,Wc) + ğ1(APWc

RXa),Zd

− ğ1(∇̄WcrSXa,Zd)− ğ1(∇̄WcsSXa,Zd)

+ ğ1(GWcSXa,Zd) + ğ1(APZd
RXa,Wc)

Using (18), property m3(b) , and (37), we derive

ğ1([Zd,Wc],Xa) = sinh2θğ1(∇̄Zd
Xa,Wc) + 2sinhθcoshθZd(θ)ğ1(Xa,Wc)

+ ğ1(∇̄Zd
SRXa,Wc)− ğ1(UZd

Wc,SXa)

− sinh2θğ1(∇̄Wc
Xa,Zd)− 2sinhθcoshθWc(θ)ğ1(Xa,Zd)

− ğ1(∇̄Zd
SRXa,Wc) + ğ1(UWcZd,SXa)

Using GZd
Wc ∈ Γ(D⊥

t ) , for any Zd,Wc ∈ Γ(D⊥
t ) , UL1

Vf ∈ Γ(µ) , for any L1,Vf ∈ Γ(T Nx) and then by (5),
(6), we derive

ğ1([Zd,Wc],Xa) = −sinh2θğ1([Zd,Wc],Xa)

− ğ1(ASRXa
Zd,Wc) + ğ1(ASRXa

Wc,Zd)

Since ASRXa is symmetric and θ ̸= π
2 , we obtain D⊥

t is integrable. If we imagine that N⊥
b is a leaf of D⊥

t in Nx ,
h⊥ be a second fundamental form of N⊥

b in Nx . Then ğ1(h⊥(Zd,Wc),Xa) = ğ1(∇Zd
Wc,Xa) = ğ1(∇̄Zd

Wc,Xa) .
Using (1) and (10), we get

ğ1(h
⊥(Zd,Wc),Xa) = ğ1(∇̄Zd

Wc,Xa)

= −ğ1((∇̄Zd
PWc,PXa)

= −ğ1(∇̄Zd
PWc,PXa) + ğ1((∇̄Zd

P)Wc,PXa)

= +ğ1(PWc, ∇̄Zd
PXa) + ğ1(GZd

Wc,RXa) + ğ1(UZd
Wc,SXa)

From GZd
Wc ∈ Γ(D⊥

t ) , for any Zd,Wc ∈ Γ(D⊥
t ) and UL1

Vf ∈ Γ(µ) , for any L1,Vf ∈ Γ(T Nx) and using
(5),(8),(9), and (10), we obtain
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ğ1(h
⊥(Zd,Wc),Xa) = +ğ1(∇̄Zd

RXa,PWc)− ğ1(∇̄Zd
PSXa,Wc)

+ ğ1((∇̄Zd
P)SXa,Wc)

= ğ1(h1(Zd,RXa),PWc)− ğ1(∇̄Zd
rSXa,Wc)

− ğ1(∇̄Zd
sSXa,Wc) + ğ1(GZd

SXa,Wc)

Using property (m3)(b) , (5),(6),(4), and (18) , we derive

ğ1(h
⊥(Zd,Wc),Xa) = −ğ1(APWc

RXa,Zd)− sinh2θğ1(∇̄Zd
Wc,Xa)

+ ğ1(ASRXa
Zd,Wc)− ğ1(UZd

Wc,SXa)

Thus, by the hypothesis of the theorem, we obtain

cosh2θğ1(h
⊥(Zd,Wc),Xa) = cosh2θXa(φ)ğ1(Zd,Wc)

From the description of gradient, we get

ğ1(h
⊥(Zd,Wc),Xa) = ğ1(Zd,Wc)ğ1(gradφ,Xa)

so that h⊥(Zd,Wc) = ğ1(Zd,Wc)ğ1gradφ , for vectors Zd,Wc ∈ D⊥
t . Mean curvature is H = gradφ and N⊥

b

is totally umbilical in Nx ,
where gradφ is the gradient of φ (∇φ) and φ is a nonconstant function on Nx .
Now, we explain gradφ is parallel corresponding to the normal connection D⊥

t of N⊥
b in Nx . For Xa ∈ Dα

n

and Wc ∈ D⊥
t , we get

ğ1(DWc
gradφ,Xa) = ğ1(∇Wc

gradφ,Xa)

= Wcğ1(gradφ,Xa)− ğ1(gradφ,∇Wc
Xa)

= Wc(Xa(φ))− ğ1(gradφ, [Wc,Xa])− ğ1(gradφ,∇Xa
Wc)

= Xa(Wcφ) + ğ1(∇Xa
gradφ,Wc)

= 0

Thus, Wcφ = 0 , for every Wc ∈ D⊥
t also ∇Xagradφ ∈ Dα

n ; therefore, Dα
n is totally geodesic. We understand

that mean curvature of N⊥
b is parallel. Therefore, the leaves of D⊥

t are totally umbilical with parallel mean
curvature H = gradφ . Thus, N⊥

b is called the extrinsic sphere in Nx . By considering Hiepko [7], we attain
that Nx is a warped product pointwise submanifold and (for type-1 ).
We obtain the proof (for type-1). Similarly, the proof for type-2 is obtained.

5. An optimal inequality
We achieve a connection for the squared norm of the second fundamental form. For later utilize, we give an
orthonormal frame.
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Let Nx = N θ
a ×k N⊥

b be an s-dimensional warped product pointwise hemislant submanifold whose am-
bient spaces are (2m) -dimensional nearly para-Kaehler manifold N̄x with N⊥

b of dimension d1 and basis N θ
a

of dimension d2 = 2p . We take tangent spaces of N⊥
b and N θ

a by D⊥
t and Dα

n . We create orthonormal
frames according to type-1 and type-2. Firstly, for type-1, we create the orthonormal frames of Dα

n and D⊥
t ,

respectively;
{E1, .., Ep, Ep+1 = sechθT E1, ..., E2p = sechθT Ep} and
{E2p+1 = E∗1 , ..., Es = E2p+d1 = E∗d1

} that θ is nonconstant.

At the moment, we will give orthonormal frames of the normal subbundles of SDα
n ,PD⊥

t , µ . These frames
are
{Es+1 = Ēd1+1 = cschθSE∗1, Es+d1+2 = Ē1 = cschθSE1, ..., Es+p = Ēp = cschθSEp,

Es+p+1 = Ēp+1 = cschθsechθSRE1, ..., Es+2p = Ē2p = cschθsechθSREp} ,
{Es+2p+1 = PE∗1, ..., E2s = PE∗d1

} and
{E2s+1, ..., E2m}
where θ is the slant function and SDα

n ,PD⊥
t and µ , respectively are 2p , d1 and 2m− 2s

Let us assume that
* on D⊥

t : orthonormal basis {Ev}v=1 ,...,d1
, where d1 = dim(D⊥

t ) ; also, supposed that ğ1(Ev, Ev) = 1 .
* on Dα

n : orthonormal basis {E∗w}w=1 ,...,2p , where 2p = dim(Dα
n) also ğ1(E∗w, E∗w) = ∓1 .

* on PD⊥
t : orthonormal basis {Ev}v=1 ,...,d1

, where d1 = dimP(D⊥
t ) also ğ1(PEv,PEv) = −1 .

* on SDα
n : orthonormal basis {E∗w}w=1 ,...,2p , where 2p = dimS(Dα

n) also ğ1(E∗w, E∗w) = ∓1 .

Theorem 5.1. Let Nx = N θ
a ×k N⊥

b be an s-dimensional mixed geodesic warped product pointwise hemislant
type-1 submanifold whose ambient spaces are (2m)- dimensional nearly para-Kaehler manifolds N̄x . In this
place, N θ

a is a proper pointwise slant submanifold and N⊥
b is an antiinvariant submanifold of dimension d1 of

N̄x . For N⊥
b is spacelike, we get

1) The squared norm of the second fundamental form of Nx supplies

||h1||2 ≤ d1coth
2 θ||grad(lnk)||2 (39)

where grad(lnk) is the gradient of lnk (∇(lnk)) and k is a nonconstant function.
2) If the equality sign of (39) holds the same way, N θ

a is totally geodesic and N⊥
b is totally umbilical in N̄x .

Proof. From description ||h1||2 = ||h1(Dm,Dm)||2 + 2||h1(Dm,D⊥
t )||2 + ||h1(D⊥

t ,D⊥
t )||2 , it is seen that

Dm = Dα
n . Since Nx is mixed geodesic, the middle term of the right-hand side should vanish. In that case, we

get

||h1||2 =

2m∑
r=s+1

2p∑
v,w=1

ğ1(h1(Ev, Ew), Er)
2 +

2m∑
r=s+1

d1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), Er )

2

This equation can be separated for the PD⊥
t , SDα

n and µ components as follows:
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||h1||2 =

2p∑
r=1

2p∑
v,w=1

ğ1(h1(Ev, Ew), Ēr)
2 +

d1∑
r=1

2p∑
v,w=1

ğ1(h1(Ev, Ew),PE∗r)2

+

2m∑
r=2s+1

2p∑
v,w=1

ğ1(h1(Ev, Ew), Er)
2 +

2p∑
r=1

d1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), Ēr)

2

+

d1∑
r=1

d1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w),PE∗r)2

+

2m∑
r=2s+1

d1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), Er)

2 (40)

Utilizing (29), the second term of the right-hand side in the last equation is zero for a mixed geodesic.
This is because there is no relationship in terms of the warping function for the first, third, fifth, and sixth
terms in the right hand side of the last equation. Therefore, these terms vanish, leaving only the fourth term
to be evaluated.

||h1||2 ≤
p∑

r=1

d1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), cschθSEr)

2

+

p∑
r=1

d1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), cschθsechθSREr)

2

18
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Using (28),(29), and (32), we get

||h1||2 ≤ csch2θ

p∑
r=1

d1∑
v,w=1

(REwlnk)
2ğ1(E

∗
v, E

∗
w)

2

+ coth2θ

p∑
r=1

d1∑
v,w=1

(Erlnk)
2ğ1(E

∗
v, E

∗
w)

2

= d1csch
2θ

2p∑
r=1

(RErlnk)
2 − d1csch

2θ

2p∑
r=p+1

(RErlnk)
2

+ d1coth
2θ

p∑
r=1

(Erlnk)
2

= d1csch
2θ||Rgradlnk||2 − d1csch

2θ

p∑
r=1

ğ1(Er+p, Rgradlnk)
2

+ d1coth
2θ

p∑
r=1

(Erlnk)
2

= d1coth
2θ||gradlnk||2 − d1csch

2θsech2θ

p∑
r=1

ğ1(REr, Rgradlnk)
2

+ d1coth
2θ

p∑
r=1

(Erlnk)
2

By using ( 16), we obtain ||h1||2 ≤ d1coth
2 θ||gradlnk||2 , which is inequality 1). If the equality holds in (39),

then from the remaining first and third terms in (40), we derive

ğ1(h1(Dα
n ,Dα

n), SDα
n) = 0 ⇒ h1(Dα

n ,Dα
n) ⊂ PD⊥

t ⊕ µ (41)

and

ğ1(h1(Dα
n ,Dα

n), µ) = 0 ⇒ h1(Dα
n ,Dα

n) ⊂ PD⊥
t ⊕ SDα

n (42)

Then from (41) and (42), we obtain

h1(Dα
n ,Dα

n) ⊂ PD⊥
t (43)

However, using (32) for a mixed geodesic, we obtain

h1(Dα
n ,Dα

n)⊥PD⊥
t (44)

Then, from (43) and (44), we derive

h1(Dα
n ,Dα

n) = 0 (45)

Because N θ
a is totally geodesic in Nx [3], (45) means that N θ

a is totally geodesic in N̄x . From the remaining
fifth and sixth terms, we express
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ğ1(h1(D⊥
t ,D⊥

t ),PD⊥
t ) = 0 ⇒ h1(D⊥

t ,D⊥
t ) ⊂ SDα

n ⊕ µ (46)

ğ1(h1(D⊥
t ,D⊥

t ), µ) = 0 ⇒ h1(D⊥
t ,D⊥

t ) ⊂ PD⊥
t ⊕ SDα

n (47)

Then from (46) and (47), we obtain

h1(D⊥
t ,D⊥

t ) ⊂ SDα
n (48)

Also from (33) for a mixed geodesic, we obtain

ğ1(h1(Zd,Wc),SRXa) = −cosh2θ(Xalnk)ğ1(Zd,Wc) (49)

for any Xa ∈ TN θ
a and Zd,Wc ∈ TN⊥

b . Therefore, from (48) and (49) ,N⊥
b is totally umbilical in Nx [3], we

get that N⊥
b is totally umbilical in N̄x . The proof is obtained.

Remark 5.2 If N⊥
b manifold of Theorem 5 .1 is totally umbilical and timelike, equation (39) should be

modified by

||h1||2 ≥ d1coth
2 θ||grad(lnk)||2 (50)

where grad(lnk) is the gradient of lnk (∇(lnk)) and k is a nonconstant function.
In a similar way, for proper pointwise slant submanifold N θ

a of type-2 , we achieve

Theorem 5.3 Let Nx = N θ
a ×kN⊥

b be an s-dimensional mixed geodesic warped product hemislant submanifold
whose ambient spaces are (2m)- dimensional nearly para-Kaehler manifold N̄x . Hence, N⊥

b is spacelike and
timelike, respectively. Then, (for type-2)
The squared norm of the second fundamental form of Nx supplies:

||h1||2 ≤ d1cot
2θ||grad(lnk)||2(respectively, ||h1||2 ≥ d1cot

2θ||grad(lnk)||2) (51)

where grad(lnk) is the gradient of lnk (∇(lnk)) and k is a nonconstant function.
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